blob: 6bfb6ace77570d05b5e5695ad86860a2b57beb0a [file] [log] [blame]
view: revenue_pdt {
label: "revenue_pdt view label"
# # Or, you could make this view a derived table, like this:
derived_table: {
sql: SELECT
'foo' as foo,
segment,
segment segment2,
format_timestamp('%F %T', current_timestamp(), 'America/Los_Angeles') pdt_time_bis
FROM gcc_internal.revenue
;;
sql_trigger_value: SELECT concat('pdt_trigger hour is', EXTRACT(HOUR FROM CURRENT_TIMESTAMP()));;
publish_as_db_view: yes
}
#
# # Define your dimensions and measures here, like this:
dimension: foo {
description: "foo dimension description"
type: string
sql: ${TABLE}.foo ;;
}
dimension: segment {
type: string
sql: ${TABLE}.segment ;;
}
dimension: segment2 {
type: string
sql: ${TABLE}.segment2 ;;
}
dimension: pdt_time {
type: string
sql: ${TABLE}.pdt_time_bis ;;
}
#
# dimension: lifetime_orders {
# description: "The total number of orders for each user"
# type: number
# sql: ${TABLE}.lifetime_orders ;;
# }
#
# dimension_group: most_recent_purchase {
# description: "The date when each user last ordered"
# type: time
# timeframes: [date, week, month, year]
# sql: ${TABLE}.most_recent_purchase_at ;;
# }
#
# measure: total_lifetime_orders {
# description: "Use this for counting lifetime orders across many users"
# type: sum
# sql: ${lifetime_orders} ;;
# }
}